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Abstract

This paper proposes a new framework for the measurement of population health and the
ranking of the health of different geographies. Since population health is a latent variable,
studies which measure and rank the health of different geographies must aggregate observable
health attributes into one summary measure. We show that the methods used in nearly all
the literature to date implicitly assume that all attributes are infinitely substitutable. Our
method, based on the measurement of multidimensional welfare and inequality, minimizes the
entropic distance between the summary measure of population health and the distribution of
the underlying attributes. This summary function coincides with the constant elasticity of
substitution and Cobb-Douglas production functions and naturally allows different assump-
tions regarding attribute substitutability or complementarity. To compare methodologies, we
examine a well-known ranking of the population health of U.S. states, America’s Health Rank-
ings. We find that states’ rankings are somewhat sensitive to changes in the weight given to
each attribute, but very sensitive to changes in aggregation methodology. Our results have
broad implications for well-known health rankings such as the 2000 World Health Report, as
well as other measurements of population and individual health levels and the measurement
and decomposition of health inequality.
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1 Introduction

Since the passing of the Patient Protection and Affordable Care Act in 2010, expanded government

involvement in the health care sector has increased the ability of policy makers to influence the health

outcomes of the populations they represent. However, the efficient allocation of public resources

requires robust measures of the costs and benefits associated with policy. Policy makers often

use rankings and other measurements of geographies’ population health, such as the Robert Wood

Johnson Foundation’s County Health Rankings and Roadmaps, the Commonwealth Fund’s Health

System Scorecards, and the United Health Foundation’s America’s Health Rankings, in designing

public policies (Erwin et al., 2008). In this paper, we show that implicit assumptions embedded in

these popular metrics could result in misleading evaluations of health, and we describe an alternative

framework that is more flexible and transparent.

Because the health of a population is a latent characteristic, these rankings, as well as many

other multidimensional health measurements, aggregate health attributes into a measure of latent

health using a weighted arithmetic mean, where the weights are chosen on a normative basis. These

methods require assumptions about the relative importance of the attributes used and the relation-

ships between attributes, and the methodology often masks the nature of these assumptions. For

example, normatively-chosen weights can place unintended emphasis on highly-correlated dimen-

sions of health. More importantly, linearly aggregating attributes using a weighted arithmetic mean

implicitly assumes that the attributes are infinitely substitutable, where the marginal rate of sub-

stitution between any two attributes is constant, completely determined by the attribute weights,

and independent of the level of each attribute.

We propose a methodology to measure and rank population health based on the concept of

multivariate generalized entropy (MGE). Originally developed by Maasoumi (1986), our methodol-

ogy chooses a summary measure of population health that minimizes the entropic distance between

the summary measure and the multivariate distribution of underlying attributes. This preserves

as much information as possible from the underlying attribute distribution when constructing the

summary measure of population health. While not applied to the measurement of health, MGE
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has been widely used to measure economic welfare, inequality, and poverty (e.g. Hirschberg et al.,

1991, 2001; Maasoumi and Nickelsburg, 1988; Maasoumi and Jeong, 1985; Lugo, 2007; Maasoumi

and Lugo, 2008; Decancq and Lugo, 2013).

Unlike the weighted arithmetic mean approach currently used by health rankings, our method-

ology makes assumptions transparent, changeable, and comparable. The MGE summary functions

coincide with the functional forms of popular utility function and production functions. This allows

researchers to transparently modify the relative importance of each attribute, the substitutability or

complementarity between the attributes, and compare how different weighting methodologies and

social preferences change the measurement of population health. Lastly, as we show, the weighted

arithmetic mean approach taken by most health rankings is a special, extreme case of our method-

ology, when health attributes are assumed to be infinitely substitutable.

To create a basis for comparison, we utilize data from a well-known ranking of the health

status of U.S. states, America’s Health Rankings, which aggregates 24 measures of health to a

measure of population health. We find that states’ health rankings are somewhat sensitive to

changes in the weighting methodology but very sensitive to changes in aggregation methodology.

As we move away from the implicit assumption of infinite substitutability in the original America’s

Health Rankings methodology towards a more complementary relationship between the different

health attributes, the correlation coefficient between the original and new rankings falls to below

0.6. The rankings of some Southern states traditionally considered unhealthy improve dramatically

while the rankings of many Midwestern states typically regarded as being healthy fall significantly.

Wealthy New England states typically remain near the top of the rankings and states commonly

considered to be exceptionally unhealthy, like Mississippi, remain poorly ranked. Thus, while linear

rankings may accurately describe extreme parts of the population health distribution, they may not

accurately characterize other aspects of the distribution. These results demonstrate the advantages

of our MGE-based method, which allows for straightforward sensitivity analyses of the aggregation

assumptions.

The rest of this paper proceeds as follows. Section 2 reviews different studies that rank health
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systems and population health. Section 3 describes the general entropy aggregation methodology

and its uses in the measurement of economic welfare. Section 4 describes the data source and

specifics of the America’s Health Rankings methodology. Section 5 summarizes our results, and

Section 6 concludes.

2 Background

We focus on the use of health rankings rather than the constructed summary measure itself, although

the points we make remain relevant even outside the context of rankings.1 A major advantage of

rankings is that they provide a unit-free, relative metric that makes a complex set of information

much easier to understand. We are only able to measure latent characteristics, like health, by using

constructed values for which magnitudes have little intuitive meaning. This makes such metrics

difficult for policy makers and researchers to understand and utilize. Transforming such measures

into rankings provides context by comparing observable conditions of nature.

One of the most well-known rankings is the World Health Organization’s 2000 World Health

Report on health care system performance, which ranks the health systems of all World Health

Organization member countries (World Health Organization, 2000). More recently, the Common-

wealth Fund has published a series of reports aimed specifically at assessing the relative performance

of the United States health care system. These reports compare the United States to five other,

mostly English speaking, countries (Davis and Fund, 2004, 2007; Davis et al., 2010). Within the

United States, attention often focuses on ranking the population health of states or counties (Kindig

et al., 2008; Kindig and Stoddart, 2003; Erwin et al., 2008; Booske et al., 2010; Kanarek et al., 2011;

Peppard et al., 2008). These reports often get very high profile coverage, especially with recent re-

forms of the United States health care system. For example, the often-cited statistic in the 2000

1For example, quality adjusted life expectancy (QALE) is another metric commonly used to assess population
health in a multidimensional fashion (see Stewart et al., 2013, for a recent example). A detailed review and comparison
of QALE methods with our methodology is beyond the scope of this paper. However, like health rankings, QALE
metrics essentially calculate a weighted arithmetic mean. As we detail below, the primary advantage of the MGE-
based metrics we propose is a lack of dependency on linear functions to summarize the different dimensions of health.
Thus, many of our general critiques of existing health rankings also apply to QALE metrics.
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World Health Report that the United States health system ranks 37th in the world, between Costa

Rica and Slovenia, was covered in the New York Times, Associated Press, and USA Today, and is

often mentioned in other popular media, such as the film Sicko (World Health Organization, 2000;

Hilts, 2000; Neergaard, 2000; Rubin, 2000). Within the United States, rankings of states are also

covered in the national press (Rubin, 2009; Bivins, 2009).

The use of multiple attributes requires the summarization of this information by dimension

reduction, and whenever the number of dimensions is reduced information is lost. Thus, depending

on the aggregation method, valuable information could be missing from the aggregation metric.

Nearly all existing health rankings reduce the number of dimensions by calculating the weighted

arithmetic mean of the attributes, which implicitly assumes an infinite degree of substitutability

between the different attributes. In the context of a health ranking, this assumption implies that,

for example, a rise in the cardiovascular death rate in a state can be offset by a certain level

increase in the health insurance rate, and that the amount of this tradeoff is independent of the

cardiovascular death rate or health insurance rate. If society exhibits any degree of diminishing

marginal utility, then this assumption does not represent society’s preferences. Furthermore, a

world where insurance rates are increasing at a rate proportional to rate of cardiovascular deaths

may be more disconcerting than one with an increase in cardiovascular deaths alone. Yet, the linear

aggregator would treat such an event neutrally.

More recently, there have been methodological and theoretical improvements to the health rank-

ing literature. For example, treating health as a latent variable that is correlated with observable

health measures, Courtemanche et al. (2013) utilize a Bayesian hierarchical model to identify a

county’s relative rank and assess the overall health of counties in Texas and Wisconsin. They im-

prove on the traditional factor analysis approach by allowing factor weights to depend on spacial

correlations across counties. Additionally the Bayesian approach naturally lends to accounting for

uncertainty in the ranking, which they further improve by accounting for the uncertainty created

through imputing missing values. Although much more sophisticated than previous approaches,

the final estimated rankings still depend on what is fundamentally a linear combination of observed
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attributes, which implicitly assumes perfect substitutability.

Another recent paper, Makdissi and Yazbeck (2014), addresses the issue of combining multi-

ple attributes of health into a single index in the context of measuring inequalities. They show

that measures that are not ratio-scale cannot be aggregated by common index procedures because

the rankings are not robust to monotonic transformations of the original values.2 They propose

counting the number of health dimensions for which health is below a certain threshold and derive

inequality measures and stochastic dominance procedures for these modified indices. Nonetheless,

their proposed aggregation method is a linear transformation and, thus, also assumes perfect sub-

stitutability.

While making strong contributions to the literature, these papers—like most of the health rank-

ings and measurement literature—focus only on the methods of weighting and scaling variables,

leaving the issue of substitutability between health attributes largely unexplored. We show that

allowing for some degree of complementarity can have a large effect on health rankings, and that

the choice of summary function can have a more dramatic effect on the resulting rankings than the

choice of weighting or scaling method. In the next section, we introduce the theory of entropy-based

aggregation and further explore issues related to weighting.

3 Methods

In this paper, we focus on entropy-based aggregation methods, which are advantageous both for

their desirable information-preserving properties and their intuitive link to the economic theories

of production and utility. The concept of entropy comes from the field of information theory and

is a measure of the average uncertainty of a random variable. Intuitively, entropy is indicative of

how much information is needed to describe a random variable. A random variable has a minimum

level of entropy when one event in its sample space is certain and has a maximum level of entropy

when all events in the sample space are equally likely.

2A cardinal number for which zero indicates the absence of value is ratio scale. Measures that are not ratio scale
include nominal numbers, ordinal numbers, and cardinal numbers for which zero is not meaningful, like temperature.
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Relative entropy describes the information lost by mischaracterizing the probability distribution

of a random variable. If p(x) is the true distribution of a random variable, relative entropy, D(p||q)

is a measure of the inefficiency, or information loss, that occurs when the random variable is instead

represented by some other distribution q(x):

D(p||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
(1)

This measure, also known as Kullback-Leibler distance, can be thought of as the distance between

the distributions p(x) and q(x) (Cover and Thomas, 2006).3 Theil (1967) is the first to use relative

entropy in economic welfare analysis. He uses the entropic distance between a distribution of

a population’s individual income shares and the uniform distribution of income as a measure of

inequality. Several variations on Theil’s measures have since been proposed in the literature (see

Decancq and Lugo (2013) for a literature review).

Maasoumi (1986) extends the inequality measures proposed by Theil to a MGE-based measure

of multidimensional inequality. In addition to using relative entropy to evaluate inequality, he

proposes utilizing a generalized formulation of relative entropy for the aggregation of multiple

attributes of well-being into an index measure. He proposes choosing a summary function to

minimize the entropic distance between the univariate distribution of the summary function and

the original multivariate distribution. This ensures that the summary function will preserve as

much information from the original data as possible. Rather than use the calculated summary

functions to evaluate inequality like Maasoumi (1986), we take the utility function interpretation

of the aggregator one step further and directly utilize the resulting ordinal ranking it produces to

rank population health.

Formally, if Xif is the value of some attribute, f = 1 . . .M , for an observation, i = 1 . . . N ,

then Xi = (Xi1, Xi2, . . . , XiM) is the row vector of values for all attributes for observation i and

Xf = (X1f , X2f , . . . , XNf ) if the column vector of values of attribute f for all observations. We

3Relative entropy is not technically a true distance measure in the mathematical sense because it fails the triangle
inequality and is not symmetric.
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regard Xf as the sample distribution of an attribute.4 The optimal summary function transforms

the M-vector of attributes into a single value for each observation, Si = h(Xi), in such a way as to

minimize the generalized multivariate relative entropy between Si and the multivariate distribution

of Xf ’s. That is, Si minimizes the function:

Dβ(S,X;α) =
M∑
f=1

αf

{
N∑
i=1

Si

[(
Si

Xif

)β
− 1

]/
β(β + 1)

}

=
∑
f

αf

{∑
i

Si log(Si/Xif )

}
, if β = 0

=
∑
f

αf

{∑
i

Xif log(Xif/Si)

}
, if β = −1

(2)

This is essentially a weighted sum of the divergence of Si from the set of corresponding Xi. Here

the α’s represent the relative importance (or weight) assigned to each attribute. Maasoumi (1986)

shows that the summary functions that minimize Equation (2) are

Si ∝

[
M∑
f=1

δfX
−β
if

]−1/β

=
M∏
f=1

X
δf
if , if β = 0

=
M∑
f=1

δfXif , if β = −1

(3)

where δf = αf/
∑

f αf is each attribute’s relative weight. By construction, these summary functions

are as close to the original multivariate distribution as possible. The functions in Equation (3)

are the weighted harmonic mean (for β 6= 0,−1), the weighted geometric mean (for β = 0), and

the weighted arithmetic mean for (for β = −1), respectively. Thus, the methodology adopted by

current health rankings are synonymous to choosing an entropic summary function with β = −1.

4The values, Xif , are standardized such that their distributions have the same support.
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This method of dimension reduction has been widely used in the economic literature examining

multidimensional well-being. Hirschberg et al. (1991) and Hirschberg et al. (2001) consider clusters

of attributes in well-being and measure quality of life in the United States and across countries,

Maasoumi and Zandvakili (1990) develop a variation of the entropic aggregation and inequality

measurement function to estimate income mobility, and Maasoumi and Trede (2001) apply this

technique to comparing income mobility in the United States and Germany. An extension of the

entropic aggregation method has been applied to measuring inequality. Maasoumi and Jeong (1985)

estimate trends in world inequality measures, Maasoumi and Nickelsburg (1988) analyze trends in

inequality in Michigan, and more recently researchers have used these and similar methods to exam-

ine inequality and poverty in a number of settings (Justino et al., 2005; Lugo, 2007; Brandolini, 2008;

Decancq et al., 2009; Decancq and Ooghe, 2010; Maasoumi and Lugo, 2008; Lugo and Maasoumi,

2009).

The generality and transparency of the methodology allows for a straightforward characteriza-

tion of three persistent problems in the literature on multidimensional well-being and dimension

reduction: how to evaluate different bundles of attributes, how to account for the relative impor-

tance of an attribute compared to the others, and how to handle variables with different units of

measurement. In the following sections, we discuss each of these issues in greater detail.

3.1 Complementarity, Substitutability, and the Value of β

The value of the summary functions in Equation (3) depend on the choices of β and the vector

of relative weights. A major advantage of this framework is the characterization of the parameter

β. The general form of Si (β 6= 0,−1) has the same functional form as the constant elasticity of

substitution utility (or production) function, the second form (β = 0) is synonymous with a Cobb-

Douglas function, and the third form (β = −1) is a perfect substitutes function. Thus σ = 1/(1 + β)

is the constant elasticity of substitution between attributes across individuals.

With this characterization in mind, one can think of changes in β as altering the degree of

substitutability or complementarity between attributes. A β less than zero implies a higher degree
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of substitutability between attributes, and as β → −1, the elasticity of substitution approaches

infinity and attributes are combined as though they are perfectly substitutable in the calculation

of health. On the other hand, β > 0 implies a degree of complementarity between attributes.

Attributes are considered approaching perfect complements, a preference for all attributes to rise

in perfect proportion to one another, as σ → 0 and β →∞. That is, the larger the value of β, the

more complementarity is assumed between the attributes.

To formally illustrate the importance of the parameter β, consider the marginal rate of substi-

tution (MRS) between any two attributes l and m. The MRS indicates the amount of attribute m

that must be given up for a one unit increase of attribute l to preserve the value of Si,

MRSlm =
∂Si(X)/∂Xl

∂Si(X)/∂Xm

=

[
αl
αm

] [
Xm

Xl

](β+1)

. (4)

The second part of Equation (4) describes how the relative levels of attributes Xm and Xl affect

the marginal rate of substitution and how the importance of this ratio is impacted by changes in

β. If β = −1 the MRS becomes the ratio of attribute weights, αl/αm, and the value of the summary

measure is unaffected as one attribute is exchanged for another in fixed proportion (determined by

the attribute weights) regardless of the level of Xl or Xm. For any value of β greater than −1, the

MRS declines as Xl increases. This implies a degree of decreasing marginal benefit to increasing

the value of any single attribute. As β becomes increasingly large, the decreasing marginal benefit

of increasing Xl becomes more pronounced, and the MRS declines more quickly as Xl increases.

For very large values of β, an increase in the value of any attribute will have little effect on the

summary function unless all other attributes increase in a similar fashion.

These differences are further illustrated by Figure 1. The three points (A, B, and C) represent

different combinations of two attributes X1 and X2, and each graph shows the relative rankings

of A, B, and C under different levels of β. The lines in each graph represent indifference curves,

combinations of X1 and X2 that lead to the same level of health. Curves further above and to the

right of the origin represent higher health levels and better rankings. The top graph depicts perfect
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substitutability (β = −1) between X1 and X2, in which case point C is the best outcome and point

B is the worst. The middle graph represents β = 0 (a Cobb-Douglas function), and here point

C is the worst outcome and point A is the preferred outcome. The bottom graph depicts a case

in which X1 and X2 have a more complementary relationship (β = 2) and shows point B as the

best combination. As this example indicates, a preference ranking of a set of outcomes can change

significantly when the choice of β changes.

The value of β can be chosen based on experience or a particular policy goal. However, the

purpose of this procedure is to measure some unobserved characteristic about the population. As

such, researchers should consider if the assumptions made by choosing β are both indicative of

realistic relationships or tradeoffs in the data and representative of how a decision-maker would

evaluate the latent characteristic. For example, if a summary function implies that an increase

in infant mortality, no matter how large, has no negative impact on population health as long

as there is a proportional decrease in the number of people living sedentary lifestyles (as is the

case when β = −1), then the summary function may not represent realistic tradeoffs in health

outcomes or be consistent with microeconomic theory. However, most existing summary measures

and rankings aggregate multiple attributes using weighted arithmetic means, implicitly assuming

that β = −1. These summary measures include Multiple Indicators Multiple Causes models,

Principal Component Models, and popular policy metrics like the Human Development Index,

the World Health Organization rankings, the Commonwealth Fund Rankings, The Robert Wood

Johnson Foundation County Health Rankings, and America’s Health Rankings.

There are also many papers employing MGE-based summary functions, like the one we propose,

in the measurement of latent characteristics such as multidimensional well-being, poverty, and

inequality. Often researchers employing MGE-based summary functions test the robustness of

aggregation methods to different levels of β. Recently, Maasoumi and Racine (2013) propose a data-

driven method for estimating the values of β for different quantiles in the multivariate distribution

using nonparametric techniques. Whatever method is used, it is important to explicitly state and

justify the choice of β.
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3.2 Relative Importance and Attribute Weights

The choice of β allows a researcher to transparently characterize the degree to which an evenly

mixed bundle of attributes is preferable. The first part of Equation (4) indicates that the MRS

between any two attributes also depends on the relative weight given to each attribute. As αl grows

larger compared to αm, more units of Xm can be exchanged for a unit increase in Xl, holding the

value of the summary function constant, and thus the relative importance of Xl increases.

The methodologies for choosing attribute weights fall into three broad categories: normative

weights, hybrid weights, and data-driven weights (For a detailed review of weighting methodologies,

see Decancq and Lugo, 2013). Normative weights are often chosen to reflect experts’ judgments on

the relative importance of each attribute or desirable policy preferences. They may also be assigned

by weighting each attribute equally or by constructing weights using the price of each attribute.

Normative weights are desirable in that they may reflect experts’ analysis on which attributes

most affect the underlying latent measure. However, normative weights are inherently subjective,

and different experts or policy makers may have different preferences over the different attributes.

Additionally, experts’ opinions may not reflect realistic relationships between the attributes. For

example, behavior considered to be unhealthy by an expert, like excessive drinking, might be

common among healthy people of high socioeconomic status. Thus, while the behavior is probably

unhealthy on the margin, in practice it may not be negatively correlated with population health.

Finally, not accounting for attributes which are highly correlated and possibly represent the same

underlying latent information implicitly places more emphasis on these dimensions of the attribute

matrix, an issue referred to as double counting.5

Hybrid weights are similar to normative weights in that they are based on stated preferences.

However, hybrid weights are constructed using survey data to get a more representative picture

of social preferences, rather than relying on the opinions of a few experts. Hybrid weights are

also often generated by surveying the population at large about the relative importance of different

5Normative weighting procedures often attempt to avoid this by assigning weights based on groups of related
attributes. However, the underlying relationships between attributes may not be obvious to the researcher. Data-
driven weights require no special expertise in the data to calculate.
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attributes. For example, the World Health Report rankings of countries’ health care systems derived

weights by surveying 1006 respondents in 125 countries, half of whom worked for the WHO and

half of whom filled out the survey through the WHO website. Respondents were asked to rank the

relative importance of different health system goals, and the responses were then used to construct

the weights (World Health Organization, 2000; Gakidou et al., 2000).

Data-driven weights solve many of the problems of normative weights by inferring the relative

importance of each attribute from the sample data, and they are derived from the distribution

of the attribute matrix. This is advantageous because the weights are more representative of the

underlying data and because the data-driven weights can avoid the double-counting problem. The

disadvantages of data-driven weights are that they might be too sample-specific or they could be

based on spurious correlations in the data. Moreover, they may reflect inefficient behavior on the

part of decision-makers concerning the latent variable, thus hiding something policy makers might

want to change for normative reasons. Common approaches to constructing data-driven weights are

to use principal components, factor analysis, or estimate weights for each entity which maximizes

that entity’s aggregation measure.

In our analysis, we test the robustness of the normative weights in America’s Health Rankings

by using principal component analysis to generate data-driven weights. Here, the weights assigned

to each attribute indicate the degree of correlation between the attribute and the constructed vec-

tor that explains the most variance in the multivariate distribution of attributes. While this is an

excellent way to uncover the underlying relationships between the attributes, it is not without its

drawbacks. One difficulty with principal component weights is that the weights do not necessarily

have intuitive meaning and can even be negative.6 Negative weights can theoretically be corrected

by transforming the data such that the first principal component is always in the positive orthant of

the m-space of the attributes. However, such a transformation may be equally undesirable, depend-

ing on the application. Moreover, principal component analysis generates m orthogonal principal

6For example, if the summary function is a weighted geometric mean, an odd number of negative weights would
lead to a negative value of the summary function while an even number of negative weights would lead to a positive
value of the summary function.

13



components, and there is no guarantee that the first principal component sufficiently explains the

latent variable to be used as the only determinant of the attribute weights. Finally, principal com-

ponents are calculated using only the first two moments of the multivariate distribution, which

increases the likelihood of information loss.7

3.3 Data Scaling

As the different health attributes are measured in different units, we must transform the attributes

into the same units of measurement. The literature on the measurement of economic development

proposes multiple possible transformations, for example z-scores—used in the AHR rankings (de-

tailed in Section 4)—or dividing each attribute by the mean value of that attribute (see Decancq and

Lugo, 2013, for a detailed outline of these common transformation techniques). When aggregating

using non-linear functions, transformations that result in negative values are problematic.8 In this

paper, we follow the transformation utilized in the Human Development Index (HDI) outlined in

United Nations Development Programme (2013),

Xif =
Yif −min {Yf}

max {Yf} −min {Yf}
(5)

where Yif is attribute f for state i in its original units of measurement, and min {Yf} and max {Yf}

measure the minimum and maximum values for attribute f . This transformation has two main

attractive properties. Most importantly, all outcomes now have the same units. Additionally, the

values for the variables all lie between zero and one.9 Since the transformation maps our original

data to the interval (0,1), we account for attributes which are considered undesirable (for example,

infant mortality) by subtracting the transformed values from one.

7A few distributions, like the multivariate normal, are fully characterized by the first two moments.
8Here, again, a weighted geometric mean would generate a positive value of the summary function for an even

number of negative attributes but a negative value of the summary function for an odd number of negative attributes.
9As zero values are problematic in the context of a geometric mean, we change the minimum possible transformed

attribute value to be 0.001 and the maximum possible transformed attribute value to be 0.999.
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4 Data

We examine a well-known ranking of the health status of U.S. states, America’s Health Rankings

(AHR), a partnership between the United Health Foundation, the American Public Health Associ-

ation, and the Partnership for Prevention. According to AHR, they analyze a “comprehensive set

of behaviors, public health policies, community and environmental conditions, and clinical care to

provide a holistic view of the health of the nation.”10 Since 1990, AHR has collected attributes of

health for each state and provided rankings of states’ health. We downloaded data for the 2012

version of the AHR Report, which includes 24 attributes of health, organized into Determinants

of health and health Outcomes.11 Table 1 shows summary statistics for the attributes.12 For

Outcomes, AHR uses Diabetes prevalence, Poor Mental Health Days, Poor Physical Health Days,

Geographic Disparities, Infant Mortality, Cardiovascular Deaths, Cancer Deaths, and an overall

measure of Premature Death. AHR categorizes the health Determinants into Behaviors (Smoking,

Binge Drinking, Obesity, and Sedentary Lifestyle), Community and Environment (Violent Crime,

Occupational Fatalities, Infectious Disease, Children in Poverty, and Air Pollution), Policy (Lack

of Health Insurance, Public Health Funding, and Immunization Coverage), and Clinical Care (Low

Birthweight, Primary Care Physicians, and Preventable Hospitalizations).

To construct their rankings, AHR first transforms each individual attribute into a z-score cal-

culated to three decimal places and truncated between [−2, 2] to reduce the effect of outliers.13 For

any attribute that is considered a bad outcome, like infant mortality, the z-score is multiplied by −1.

The final health levels for each state are obtained by taking a weighted average of the transformed

attributes for each state, and rankings are determined based on the health levels. All weights are

chosen normatively by AHR’s Scientific Advisory Committee based on their beliefs about the at-

tribute’s effect on overall health, the uniqueness of the information given by the attribute, and the

10See http://americashealthrankings.com/About (accessed March 5, 2014).
11Specifically, we downloaded data from http://americashealthrankings.com on October 17, 2013.
12Appendix Table A1 lists these variables and their descriptions.
13AHR standardizes their attributes using a population mean when it is available, the unweighted mean of the

state attributes when the sample mean is not available, and the median when using attributes from the Behavioral
Risk Factor Surveillance System. AHR uses the unweighted standard deviation as the denominator in the z-score
calculation.
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reliability of the attribute.14 Thus, the AHR can be characterized as a measure of population health

in which multiple attributes are combined using normative weights (based on expert opinion) im-

plicitly assuming perfect substitutability between attributes (due to the choice of aggregating with

a weighted arithmetic mean).

5 Results

5.1 Replication

We are able to very closely replicate the published AHR health levels and ranks, and our detailed

replication results are available upon request. Figure 2 displays a map of the AHR rankings.

Lighter shades correspond to states with better health. Better health levels are concentrated in

the Northeast, Minnesota, and Utah, and poor health levels are concentrated in the South. We

test the robustness of the AHR rankings to variations in methodology, including not truncating

each attribute’s z-scores to [−2, 2], replacing median levels with population weighted means and

unweighted standard deviations with population weighted standard deviations in the calculations of

the z-scores, and replacing the z-score transformation with the alternative transformation described

in Equation (5) and used in our aggregation methodology. There is very little change in the rankings

when applying these different methodologies, and these detailed results are available upon request.15

5.2 Aggregation Method

Next, we examine the stability of health rankings to different methods of aggregation and assump-

tions about the substitutability or complementarity between different health attributes, utilizing the

MGE summary functions described in Section 3. As discussed in Section 3.1 the choice of β deter-

mines whether attributes are treated as substitutes or complements in the production of health. In

the MGE framework, standardized attribute values are combined using a harmonic mean (constant

14See http://americashealthrankings.com/About/Weighting (accessed March 5, 2014).
15We show our replication of the AHR health levels in Appendix Figure A1 and show the detailed results of our

robustness checks to the AHR methodology in Appendix Table A2.
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elasticity of substitution function) except for the special cases when β is −1 or 0, which use the

arithmetic mean (perfect substitutes function) or geometric mean (Cobb Douglas function). We

examine β values of -1, -0.5, -0.25, 0, 0.25, 0.5, 1, 2, and 5, use the normative weights developed by

AHR, and use the attribute transformation described in Equation (5).16 These values for β are val-

ues commonly used in the literature examining multidimensional well-being and inequality (Decancq

and Lugo, 2013; Maasoumi and Nickelsburg, 1988; Lugo, 2007). Since σ = 1/(1 + β) is the constant

elasticity of substitution between attributes, the values β = {−1,−0.5,−0.25, 0, 0.25, 0.5, 1, 2, 5}

translate to substitution elasticities of σ = {∞, 2, 1.3, 1, 0.8, 0.6, 0.5, 0.3, 0.16}, respectively.

Figure 3 shows scatterplots of the AHR rankings and rankings derived from the MGE summary

functions. Each specific scatterplot shows the original AHR rankings on the x-axis and the rankings

corresponding to the relevant level of β on the y-axis.17 The original AHR rankings diverge from

the MGE rankings as the attributes change from substitutes to complements, and the correlation

coefficient decreases to 0.6 when β=2.18 This is not surprising since as the value of β increases the

relative importance of a state’s worst health attribute also increases. Thus, even assuming a state

ranked first in every category except one for which it ranked last, that state would eventually fall

to last place in the rankings as β increased.

To illustrate the divergences and similarities between the original AHR rankings and the MGE

rankings, Figure 4 shows a map of each state’s rankings calculated under a subset of the β values

used above: β = −1, 0, 1, 2. Some interesting regional patterns emerge. The Northeast largely

stays in good health. In fact, Vermont remains the healthiest state throughout all our chosen

values for β. Additionally, Colorado, Utah, Oregon and Washington maintain relatively high health

rankings. However, some parts of the South and upper Midwest see large changes in their health

rankings. In the South, Louisiana, Alabama, Georgia and Florida see large rankings increases, while

in the Midwest, Minnesota and Wisconsin see large rankings decreases. Mississippi, West Virginia,

and Kentucky remain among the unhealthiest states for all values of β. We further compare the

16In Section 5.3 below we examine the effects of using data-driven weights in the entropic aggregation framework.
17Appendix Table A3 shows the full ranking results.
18The rankings are not identical when β = 1 since the entropy rankings use the HDI transformation rather than

the z-score transformation.
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entropic aggregation results with some specific examples in Table 2, which shows the five states

with the largest rankings increases, decreases, and smallest rankings changes as the aggregation

procedure changes from perfectly substitutable to higher degrees of complementarity. Minnesota

falls rapidly in health rankings as health attributes are more complementary, going from 7th to

45th. Minnesota does better than the national average in all but three of the 24 health attributes.

However, Minnesota also has the worst score for infectious disease by a wide margin. As the

aggregation method becomes more complementary in nature, increasing emphasis is placed on this

one poor outcome. Similarly, Wisconsin does better than the national average in 19 out of 24 health

attributes, but has the nation’s worst rate of binge drinking and lowest rate of public health funding.

Conversely, Alabama’s and South Carolina’s rankings each increase by 19 spots. Alabama and South

Carolina are below average in 18 and 20 attributes, respectively, but are not near the bottom in

any particular outcome. This trait becomes increasingly favorable as β increases. Vermont and

Mississippi do not change rankings, although they possess very different health levels. Mississippi

falls below the national average in 19 out of 24 attributes, and is at or near the minimum attribute

levels for roughly a third of the attributes. Vermont is above average in all but two attributes,

and Vermont’s outcomes for the two attributes which are below average, binge drinking and cancer

deaths, are not far below the national average.

The role of complementarity is not trivial. From a practical point of view, a state with one

or two dimensions of very poor health could go largely unnoticed by policy makers because a

linear aggregator masks these dimensions. This is especially problematic if the few poor dimensions

generally only affect specific minority populations or those of low socioeconomic status, which is

not uncommon for health outcomes. For example, Idaho ranks very well on many of the physical

health dimensions, which is partially due to its demography.19 However, it has the nation’s worst

primary care physician coverage, which may disproportionately affect people of low socioeconomic

status and those living in rural areas. Thus, the recognition of a degree of complementary between

attributes can help uncover health inequalities and disparities within states.

19Idaho has a relatively young population and a disproportionally low percentage of minorities.
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5.3 Weights

Finally, we test the robustness of the aggregation methodology to data-driven weights. We gener-

ate data-driven weights from the first principal component of the variance/covariance matrix of our

data. To ensure that the weights add to one, we divide each element of the first principal compo-

nent by the sum of all the the first principal components. Table 3 displays the AHR and principal

component weights for each health attribute. There are some discrepancies between AHR’s norma-

tive assessment of attribute importance and the principal component weights. The two weighting

methodologies particularly diverge in the Outcome variables. The AHR weights underestimate

the importance of cardiovascular deaths, cancer deaths, diabetes, poor mental and physical health

days, and premature death in the multivariate distribution of attributes. Relative to the principal

component weights the AHR weights significantly overemphasize immunization coverage, infectious

disease, and public health funding.

The principal component weights for binge drinking and geographic disparities are negative.

This suggests, counterintuitively, that binge drinking and geographic disparities are concentrated

in states with higher relative population health.20 To make the weights suitable for the entropy

calculations, we reclassify these two variables as good attributes and subtract the transformed values

from one. This contradiction highlights the tradeoffs between normative and data-driven weights.

The normative AHR weights emphasize attributes of population health that are inversely related

to the other attributes of health and do not accurately represent the underlying relationships in

the data.21 However, transforming the data to get positive principal component weights is equally

counter-intuitive, as binge drinking and geographic health disparities are not desirable attributes.

Thus, principal component weights are less likely to misrepresent the data, while normative weights

are less likely to misrepresent the desirability of each attribute. We think this example illustrates

the benefits of this type of sensitivity analysis when evaluating multidimensional outcomes.22

20The AHR weight for geographic disparity is also 10 times larger than the calculated principal component weight.
21The negative weight for drinking is possibly due to the positive correlation between drinking and socioeconomic

status investigated by van Ours (2004).
22One interpretation of this result is that the assessment of multidimensional outcomes should de-emphasize mis-

leading attributes. In this analysis, binge drinking and geographic disparities appear to be noisy attributes of
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Figure 5 shows scatterplots of the MGE rankings using AHR weights on the x-axis and MGE

rankings using principal component weights on the y-axis. When β = −1 and the summary function

is linear, the rankings using AHR’s weights and principal component weights show a fairly strong

relationship, with a Spearman rank correlation coefficient of 0.95. There are, however, some states

which are ranked fairly differently under the two weighting schemes. For example, Rhode Island

falls 11 spots from 10th to 21st, Maine falls 11 spots from 9th to 20th, and South Dakota rises

eight spots from 27th to 19th.23 Both Rhode Island and Maine have low measures of geographic

health disparities, a trait that hurts their rankings when geographic health disparities is treated as

a positive attribute under the principal component weights. South Dakota’s high rate of geographic

disparities and binge drinking turn into positives when the principal component weights are used.

The rankings diverge more as attributes are treated as more complementary in nature. Interestingly,

much of the divergence seems to occur among the healthiest states in each weighting framework.

This is due to the interaction between differently-weighted attributes and the increasing emphasis

placed on the states’ worst health outcomes.

6 Conclusion

This paper proposes a new framework for the measurement and ranking of population health. Many

well-known rankings of population health use a weighted average of different health attributes to

compute a summary measure of population health. However, a weighted average implicitly assumes

an infinite degree of substitutability between the different attributes. In the context of a health

ranking, this assumption implies that a decrease in one attribute can be compensated for by a

proportional increase in another attribute, where the proportion is independent of the levels of the

attributes. We instead utilize a summary function derived by Maasoumi (1986) which minimizes

the entropic distance between the summary metric and the underlying distribution of the attributes.

This methodology has a number of attractive properties. First, the MGE-based summary functions

population health and are possibly more representative of some other characteristic of the population, such as the
demographic composition.

23These changes can also been seen in column 1 of Appendix Table A3.
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preserve as much information as possible from the underlying multivariate distribution of health

attributes. Second, our methodology naturally incorporates variable degrees of substitutability or

complementarity between the attributes. Finally, the summary functions mirror functional forms

often utilized in economic theory, such as the constant elasticity of substitution and Cobb-Douglas

utility or production functions, which makes the choice and interpretation of parameters more

intuitive. In fact, rankings derived from weighted averages are a special case of our methodology,

in which attributes are combined using a perfect substitutes utility function.

We compare methodologies using America’s Health Rankings, which aggregates 24 attributes of

health to a measure of state-level population health using a normatively-weighted arithmetic mean.

We find that states’ rankings are fairly stable when we change the original normative attribute

weights to weights derived from principal components. However, as we move away from the infinite

substitutability implicitly assumed in the original America’s Health Rankings methodology towards

a more complementary relationship between the different health attributes, the correlation coeffi-

cient between the AHR and our rankings falls from above 0.9 to 0.6. We see some large changes in

state rankings, with some states commonly associated with good health, such as Minnesota, drop-

ping rapidly in the health rankings. Research indicates that officials in state health departments are

aware of America’s Health Rankings and use America’s Health Rankings in designing public policies

(Erwin et al., 2008).24 If policy makers do not understand the implicit assumptions embedded in

the AHR rankings, it may lead to a mis-allocation of public resources.

It is interesting that we find very little sensitivity due to changes in scaling technique or weighting

technique given that these have been the primary methodological focus in the health rankings

literature. Meanwhile, while changes in the summary functional form lead to large changes in the

health rankings, research into summary functional form is limited in the measurement and ranking

of multidimensional health.

Our framework involves a set of choices which researchers measuring population health or de-

veloping health rankings should state explicitly. First, researchers must choose a set of attributes

24A list of policies and initiatives were related to the results of America’s Health Rankings can be found on their
“Success Story Archive”: http://americashealthrankings.org/Stories/.
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to use in the measurement of health. Second, researchers need to choose a set of weights for the

attributes. These weights can be chosen normatively or through data-driven methods. Since our

results demonstrate that different weighting methodologies can result in some nontrivial changes in

the levels of population health and health rankings, researchers should examine how their measure-

ments change under different weighting methodologies.

Finally, researchers must choose which values of β to use. This is also a subjective choice and

the reasons for the choice should be made explicit. For example, the Cobb-Douglas production

function is the most widely used production function in economics and coincides with β = 0,

which represents neither substitutability nor complementarity between the attributes. Alternatively,

economic studies have estimated production function elasticities between a number of goods, and

researchers could use these estimates to justify choices of β. For example, Jensen and Morrisey

(1986) estimate substitution elasticities between different hospital production inputs. On the low

end, they find an elasticity of 0.16 between medical staff and hospital beds (β = 5.25), and on the

higher end they find an elasticity of 2.13 between nurses and residents (β = −0.53). Hamermesh

(2008) finds substitution elasticities of 0.2 to 0.4 between household production factors (β between

1.5 and 4), and Antras (2004) finds substitution elasticities between capital and labor in the United

States significantly below one (β > 0). Thus, there is an empirical precedent for complementarity

in production inputs in a variety of contexts, providing evidence against the assumption that inputs

are perfectly substitutable in the production of population health. While any single choice of β can

be disputed on empirical or normative grounds, the advantage of the methodology we propose is

that it is a relatively simple exercise to compare results from several different β values. This can be

used to construct a metric or ranking range—similar to a confidence interval—for reasonable ranges

of β. Additionally, values of β could be estimated from individual-level data in some contexts.

Our study has a number of limitations which suggest areas for future research. First, although

we constructed data-driven weights and compared them to the weights developed by America’s

Health Rankings, there are other weighting methodologies which we have not considered. Some

recent economics research suggests using Bayesian econometrics to develop weights which account
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for spatial correlations, and other papers have proposed using weights which maximize the summary

metric for each observation (Courtemanche et al., 2013; Decancq and Lugo, 2013; Maasoumi and

Xu, 2013). Second, our current methodology does not account for sampling errors in the underlying

metrics. Thus, some of the differences we find between state rankings may not be statistically

significantly different from the original rankings. This is also an issue in the original America’s

Health Rankings. Thirdly, our study does not estimate heterogeneity in population health within

states. One extension of this study could examine smaller geographies, perhaps counties or zip

codes, to achieve a more finely tuned analysis of health levels in the United States. Relatedly, our

study, like most previous work, does not account for differences in outcomes that are related to

differing state demographic characteristics.

Our methodology could be extended to analyze the level, trend, and decomposition of health

inequality, a topic that continues to receive much attention in the literature (Allanson et al., 2010;

Clark, 2011; Wagstaff et al., 1991). In addition to developing an aggregation metric based on MGE,

Maasoumi (1986) develops a measure of inequality which has been widely used in the measurement

of inequality in multidimensional well-being. This metric of inequality can also be decomposed

to determine the relative inequalities within groups versus across groups. Thus, our methodology

could be extended to measure health inequalities within and across states, counties, or groups of

individuals, as well as measuring trends across time in these measures of inequality.
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Figure 1: Aggregation Functional Forms and Rankings Changes
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Figure 2: Map of State Population Health Ranks from AHR
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Notes: Data from the 2012 version of America’s Health Rankings. Lighter shades correspond to lower health
rankings. Lower ranking numbers indicate better health, so the state with the best health receives a ranking of one.
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Figure 3: Scatterplot of State Population Health Rankings
America’s Health Rankings vs. MGE Rankings
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Notes: Data from the 2012 version of America’s Health Rankings. The scatterplots show the AHR state health
rankings compared to state health rankings using the entropic aggregation function under different assumptions
regarding β, the substitution parameter. Lower ranking numbers indicate better health, so the state with the best
health receives a ranking of one. All outcomes use the weights developed by AHR. The correlation coefficients
correspond to Spearman’s rank correlation coefficient.

29



Figure 4: Map of MGE State Population Health Rankings Under Different Values of Beta
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Notes: Data from the 2012 version of America’s Health Rankings. Lighter shades correspond to lower health
rankings. Lower ranking numbers indicate better health, so the state with the best health receives a ranking of one.
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Figure 5: Scatterplot of State Population Health Rankings
MGE Using AHR Weights vs. MGE Using Principal Component Weights
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Notes: Data from the 2012 version of America’s Health Rankings. The scatterplots show state health rankings
using the entropic aggregation function under different assumptions regarding β, the substitution parameter, using
AHR weights on the x-axis and principal component weights on the y-axis. Lower ranking numbers indicate better
health, so the state with the best health receives a ranking of one. The correlation coefficients correspond to
Spearman’s rank correlation coefficient.
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Table 1: Summary Statistics

Behavior Category Mean Std.Dev Weight (%)

Smoking Behaviors 20.11 3.68 7.50
Binge Drinking Behaviors 18.29 2.57 5.00
Obesity Behaviors 27.43 2.96 5.00
Sedentary Lifestyle Behaviors 25.43 3.95 2.50
High School Graduation Behaviors 75.50 5.82 5.00
Violent Crime Community and Environment 404.00 106.26 5.00
Occupational Fatalities Community and Environment 4.10 1.30 2.50
Infectious Disease Community and Environment 12.40 4.36 5.00
Children in Poverty Community and Environment 21.40 4.17 5.00
Air Pollution Community and Environment 10.50 2.28 5.00
Lack of health Insurance Policy 16.00 4.31 5.00
Public Health Funding Policy 92.00 29.05 2.50
Immunization Coverage Policy 90.30 1.98 5.00
Low Birthweight Clinical Care 8.10 1.05 5.00
Primary Care Physicians Clinical Care 120.00 23.02 5.00
Preventable Hospitalizations Clinical Care 67.00 12.35 5.00
Diabetes Outcomes 9.77 1.11 2.00
Poor Mental Health Days Outcomes 3.86 0.39 2.00
Poor Physical Health Days Outcomes 3.95 0.42 2.00
Geographic Disparity Outcomes 0.18 0.04 5.00
Infant Mortality Outcomes 6.50 1.16 5.00
Cardiovascular Deaths Outcomes 264.90 31.31 2.00
Cancer Deaths Outcomes 182.50 14.84 2.00
Premature Death Outcomes 7151.00 1248.68 5.00

Notes: Data from the 2012 version of America’s Health Rankings.
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Table 2: Examples of State Rankings Changes

Panel A: Largest Rankings Decreases

Rank for Value of Beta

State -1 -0.5 0 1 2 Change

Minnesota 7 10 22 45 45 -38
Wisconsin 16 18 34 46 46 -30
Idaho 17 19 26 40 40 -23
North Dakota 12 15 17 28 33 -21
Wyoming 23 26 37 43 43 -20

Panel B: Largest Rankings Increases

Rank for Value of Beta

State -1 -0.5 0 1 2 Change

Alabama 45 45 41 33 26 19
South Carolina 46 42 40 31 27 19
Florida 34 33 28 21 17 17
Georgia 36 34 29 22 19 17
Michigan 37 36 30 23 20 17

Panel C: Smallest Rankings Changes

Rank for Value of Beta

State -1 -0.5 0 1 2 Change

Mississippi 50 50 50 50 50 0
Nebraska 15 14 14 16 15 0
Oregon 14 13 12 14 14 0
Vermont 1 1 1 1 1 0
Hawaii 2 2 2 2 3 -1

Notes: Data from the 2012 version of America’s Health Rankings. Each
row shows the rankings for a state’s health under different assumptions
regarding β, the substitution parameter. Lower ranking numbers indicate
better health, so the state with the best health receives a ranking of one.
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Table 3: AHR and Principal Component Weights

AHR PC
Behavior Category Weight (%) Weight (%)

Smoking Behaviors 7.50 6.08
Binge Drinking Behaviors 5.00 -4.58
Obesity Behaviors 5.00 6.28
Sedentary Lifestyle Behaviors 2.50 6.59
High School Graduation Behaviors 5.00 4.04
Violent Crime Community & Environment 5.00 3.25
Occupational Fatalities Community & Environment 2.50 3.48
Infectious Disease Community & Environment 5.00 1.40
Children in Poverty Community & Environment 5.00 5.11
Air Pollution Community & Environment 5.00 3.35
Lack of health Insurance Policy 5.00 3.61
Public Health Funding Policy 2.50 1.16
Immunization Coverage Policy 5.00 0.64
Low Birthweight Clinical Care 5.00 5.85
Primary Care Physicians Clinical Care 5.00 3.40
Preventable Hospitalizations Clinical Care 5.00 6.28
Diabetes Outcomes 2.00 6.95
Poor Mental Health Days Outcomes 2.00 5.74
Poor Physical Health Days Outcomes 2.00 5.84
Geographic Disparity Outcomes 5.00 -0.55
Infant Mortality Outcomes 5.00 6.21
Cardiovascular Deaths Outcomes 2.00 6.84
Cancer Deaths Outcomes 2.00 5.70
Premature Death Outcomes 5.00 7.29

Notes: Data from the 2012 version of America’s Health Rankings. The AHR weight shows the weight given to each
outcome in the America’s Health Rankings Report. The PC weights are calculated as the normalized first principal
component of matrix of attributes transformed by Equation 5.
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Figure A1: Replication of AHR Population Health Levels and Ranks
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Notes: Data from the 2012 version of America’s Health Rankings. The scatter plots show state health rankings
and health levels from the AHR website and our replication of the AHR methodology. Lower ranking numbers
indicate better health, so the state with the best health receives a ranking of one. The correlation coefficient
corresponds to Pearson’s correlation coefficient for the z-values (health levels) and Spearman’s rank correlation
coefficient for the ranks.
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Table A1: AHR Attribute Descriptions

Behavior Category Data Source Description

Smoking Behaviors BRFSS Percentage of population over age 18 that
smokes on a regular basis (smoked at least
100 cigarettes in their lifetime and currently
smoke every day or some days).

Binge Drinking Behaviors BRFSS Percentage of population over age 18 that
drank excessively in the last 30 days (five or
more drinks for males and four or more drinks
for females on one occasion).

Obesity Behaviors BRFSS Percentage of population over 18 estimated to
be obese, with a body mass index (BMI) of
30.0 or higher.

Sedentary Lifestyle Behaviors BRFSS Percentage of the population over age 18 who
report doing no physical activity or exercise
(such as running calisthenics, golf, gardening,
or walking) other than their regular job in the
last 30 days.

High School
Graduation

Behaviors NCES Percentage of incoming ninth graders who
graduate in four years from a high school with
a regular degree.

Violent Crime Community &
Environment

FBI Number of murders, rapes, robberies, and ag-
gravated assaults per 100,000 population.

Occupational
Fatalities

Community &
Environment

CFOI, BLS Number of fatalities from occupational in-
juries per 100,000 workers.

Infectious Disease Community &
Environment

CDC, MMWR Number of reported cases of measles, per-
tussis, syphilis and Hepatitis A per 100,000
population.

Children in Poverty Community &
Environment

CPS,
Census Bureau

Percentage of persons under age 18 who live in
households at or below the poverty threshold.

Air Pollution Community &
Environment

EPA,
Census Bureau

Average exposure of the general public to par-
ticulate matter of 2.5 microns or less in size.

Lack of Health
Insurance

Policy CPS,
Census Bureau

Percentage of the population that does not
have health insurance privately, through their
employer, or the government.

Public Health
Funding

Policy TFAH State funding dedicated to public health as
well as federal funding directed to states by
the Centers for Disease Control and Preven-
tion and the Health Resources and Services
Administration.

Immunization
Coverage

Policy CDC, NIP Average percentage of children ages 19 to 35
months who have received these individual
vaccinations: four or more doses of DTP, three
or more doses of poliovirus vaccine, one or
more doses of any measles-containing vaccine,
and three or more doses of HepB vaccine.

(Continued on next page)
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Table A1 (continued)

Behavior Category Data Source Description

Low Birthweight Clinical Care CDC, NCHS Percentage of babies weighing less than 2,500
grams (5 pounds, 8 ounces) at birth.

Primary Care
Physicians

Clinical Care AMA Number of primary care physicians (including
general practice, family practice, OB-GYN,
pediatrics, and internal medicine) per 100,000
population.

Preventable
Hospitalizations

Clinical Care Dartmouth
Atlas

Discharge rate among the Medicare popula-
tion for diagnoses that are amenable to non-
hospital based care.

Diabetes Outcomes BRFSS Percentage of population over age 18 who have
been told by a health professional that they
have diabetes (does not include pre-diabetes
or diabetes during pregnancy).

Poor Mental
Health Days

Outcomes BRFSS Number of days in the previous 30 days when
a person indicates their activities were limited
due to mental health difficulties.

Poor Physical
Health Days

Outcomes BRFSS Number of days in the previous 30 days when
a person indicates their activities were limited
due to physical health difficulties.

Geographic Disparity Outcomes CDC, NCHS Variation in overall mortality rates among the
counties within a state.

Infant Mortality Outcomes CDC, NCHS Number of infant deaths (before age 1) per
1,000 live births.

Cardiovascular Deaths Outcomes CDC, NCHS Number of deaths due to all cardiovascular
diseases, including heart disease and strokes,
per 100,000 population.

Cancer Deaths Outcomes CDC, NCHS Number of deaths due to all causes of cancer
per 100,000 population.

Premature Death Outcomes CDC, NCHS Number of years of potential life lost prior to
age 75 per 100,000 population.

Notes: Data from the 2012 version of America’s Health Rankings.
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Table A2: Replication of AHR Rankings and Robustness Checks

Replication Number

State (1) (2) (3) (4) (5)

Alabama -0.52 (45) -0.525 (45) -0.541 (46) -0.613 (45) 0.395 (45)
Alaska 0.08 (28) 0.083 (28) 0.103 (26) 0.063 (27) 0.523 (28)
Arizona 0.14 (25) 0.139 (25) 0.139 (25) 0.108 (25) 0.541 (25)
Arkansas -0.72 (48) -0.715 (48) -0.736 (48) -0.843 (48) 0.349 (48)
California 0.26 (22) 0.263 (22) 0.253 (22) 0.277 (22) 0.570 (22)
Colorado 0.55 (11) 0.547 (11) 0.573 (11) 0.575 (12) 0.636 (11)
Connecticut 0.82 (6) 0.817 (6) 0.829 (6) 0.900 (6) 0.695 (6)
Delaware -0.06 (31) -0.059 (30) -0.051 (30) -0.108 (31) 0.497 (31)
Florida -0.14 (34) -0.135 (34) -0.135 (34) -0.223 (34) 0.480 (34)
Georgia -0.26 (36) -0.258 (36) -0.258 (36) -0.295 (36) 0.460 (36)
Hawaii 0.98 (2) 0.979 (2) 1.065 (2) 1.189 (2) 0.739 (2)
Idaho 0.42 (17) 0.422 (17) 0.422 (17) 0.447 (17) 0.601 (17)
Illinois -0.06 (30) -0.060 (31) -0.060 (31) -0.096 (30) 0.502 (30)
Indiana -0.34 (41) -0.340 (41) -0.340 (41) -0.383 (39) 0.442 (39)
Iowa 0.30 (20) 0.299 (20) 0.299 (20) 0.326 (20) 0.578 (20)
Kansas 0.15 (24) 0.153 (24) 0.153 (24) 0.151 (24) 0.544 (24)
Kentucky -0.47 (44) -0.470 (44) -0.507 (44) -0.572 (44) 0.407 (43)
Louisiana -0.94 (49) -0.937 (50) -0.955 (49) -1.099 (49) 0.303 (49)
Maine 0.62 (9) 0.618 (9) 0.618 (9) 0.677 (9) 0.649 (9)
Maryland 0.34 (19) 0.334 (19) 0.338 (19) 0.366 (19) 0.584 (19)
Massachusetts 0.88 (4) 0.878 (4) 0.971 (3) 1.038 (3) 0.723 (3)
Michigan -0.27 (37) -0.268 (37) -0.268 (37) -0.350 (37) 0.453 (37)
Minnesota 0.82 (5) 0.821 (5) 0.786 (7) 0.895 (7) 0.688 (7)
Mississippi -0.94 (49) -0.936 (49) -1.111 (50) -1.279 (50) 0.273 (50)
Missouri -0.40 (42) -0.402 (42) -0.402 (42) -0.487 (42) 0.424 (42)
Montana 0.04 (29) 0.033 (29) 0.025 (29) -0.032 (29) 0.513 (29)
Nebraska 0.51 (15) 0.512 (15) 0.512 (15) 0.569 (13) 0.625 (15)
Nevada -0.28 (38) -0.282 (38) -0.321 (39) -0.444 (41) 0.439 (41)
New Hampshire 0.90 (3) 0.897 (3) 0.925 (4) 1.011 (4) 0.716 (4)
New Jersey 0.64 (8) 0.647 (8) 0.647 (8) 0.689 (8) 0.655 (8)
New Mexico -0.07 (32) -0.067 (32) -0.075 (32) -0.166 (33) 0.486 (33)
New York 0.40 (18) 0.398 (18) 0.398 (18) 0.388 (18) 0.599 (18)
North Carolina -0.10 (33) -0.106 (33) -0.106 (33) -0.143 (32) 0.490 (32)
North Dakota 0.54 (12) 0.539 (12) 0.561 (12) 0.603 (11) 0.631 (12)
Ohio -0.24 (35) -0.247 (35) -0.247 (35) -0.264 (35) 0.465 (35)
Oklahoma -0.46 (43) -0.464 (43) -0.470 (43) -0.552 (43) 0.405 (44)
Oregon 0.53 (13) 0.526 (13) 0.526 (13) 0.538 (16) 0.625 (14)
Pennsylvania 0.10 (26) 0.103 (26) 0.103 (27) 0.104 (26) 0.537 (26)
Rhode Island 0.59 (10) 0.590 (10) 0.608 (10) 0.657 (10) 0.648 (10)

(Continued on next page)
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Table A2 (continued)

Replication Number

State (1) (2) (3) (4) (5)

South Carolina -0.54 (46) -0.536 (46) -0.537 (45) -0.644 (46) 0.392 (46)
South Dakota 0.09 (27) 0.093 (27) 0.081 (28) 0.035 (28) 0.527 (27)
Tennessee -0.32 (39) -0.316 (39) -0.288 (38) -0.364 (38) 0.444 (38)
Texas -0.33 (40) -0.328 (40) -0.331 (40) -0.389 (40) 0.442 (40)
Utah 0.80 (7) 0.806 (7) 0.884 (5) 0.962 (5) 0.704 (5)
Vermont 1.20 (1) 1.196 (1) 1.225 (1) 1.366 (1) 0.778 (1)
Virginia 0.27 (21) 0.265 (21) 0.265 (21) 0.286 (21) 0.573 (21)
Washington 0.53 (13) 0.525 (14) 0.525 (14) 0.553 (14) 0.626 (13)
West Virginia -0.66 (47) -0.656 (47) -0.676 (47) -0.789 (47) 0.363 (47)
Wisconsin 0.49 (16) 0.487 (16) 0.497 (16) 0.545 (15) 0.622 (16)
Wyoming 0.24 (23) 0.232 (23) 0.222 (23) 0.183 (23) 0.557 (23)

Notes: Data from the 2012 version of America’s Health Rankings and the U.S. Census. All
rankings use the AHR weights. The numbers are the values of the summary function, or
health levels, state health rankings are in parentheses. Each row shows the health levels and
rankings for a state’s health under different methodological assumptions:

(1): Original AHR Values from http://americashealthrankings.org.

(2): Replication of AHR values.

(3): Not truncating z-values to [-2,2].

(4): Using weighted means in place of unweighted means and median values and weighted
standard deviations, where weights are based on 2012 state population, in calculation of
z-values.

(5): Using the World Bank’s HDI transformation instead of Z-Value transformation.
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Table A3: Comparison of State Ranks with AHR Weights vs. Principal Component Weights

Rank for Value of Beta

State -1 -0.5 -0.25 0 0.25 0.5 1 2 5

Alabama 45/46 45/46 44/45 41/44 35/42 35/39 33/34 26/32 21/22
Alaska 28/18 31/21 33/23 33/23 33/24 34/24 35/29 36/30 35/30
Arizona 25/22 25/22 24/21 20/21 20/21 21/20 27/19 31/28 32/31
Arkansas 48/47 47/47 46/46 45/46 42/47 38/45 38/45 38/45 38/45
California 22/15 23/16 25/20 32/26 39/36 41/40 41/41 41/41 41/41
Colorado 11/5 11/5 11/3 11/2 11/2 10/2 11/2 9/1 6/2
Connecticut 6/11 5/10 5/10 5/10 4/10 4/9 3/9 4/24 10/33
Delaware 31/30 32/31 30/31 27/31 26/30 27/27 25/28 25/25 24/26
Florida 34/32 33/32 31/32 28/32 25/29 24/26 21/23 17/16 13/12
Georgia 36/39 34/36 34/35 29/35 27/33 25/30 22/26 19/20 18/14
Hawaii 2/2 2/1 2/1 2/1 2/1 2/1 2/1 3/4 9/19
Idaho 17/17 19/18 19/22 26/27 37/37 39/41 40/42 40/42 40/42
Illinois 30/29 28/29 27/29 23/29 22/25 22/22 20/17 22/15 22/10
Indiana 39/41 38/41 37/39 36/39 31/38 31/36 34/32 35/31 36/34
Iowa 20/13 21/14 23/14 21/15 24/16 28/18 30/20 30/26 28/25
Kansas 24/28 22/28 20/28 19/28 19/26 18/23 24/22 32/29 33/32
Kentucky 43/45 46/45 47/47 49/48 49/49 49/49 49/49 49/49 49/49
Louisiana 49/49 49/48 49/48 46/47 44/44 37/42 37/37 34/34 30/28
Maine 9/20 9/19 9/18 9/18 9/17 9/15 9/15 8/13 7/11
Maryland 19/27 17/26 17/26 15/22 15/22 15/19 13/16 12/11 8/6
Massachusetts 3/6 3/6 3/6 3/5 3/3 3/3 4/3 2/9 5/21
Michigan 37/36 36/34 36/33 30/33 28/32 26/28 23/25 20/21 20/16
Minnesota 7/1 10/2 15/2 22/6 38/12 40/34 45/40 45/40 45/40
Mississippi 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50
Missouri 42/40 40/40 38/38 35/37 30/35 30/35 29/31 28/27 31/27
Montana 29/26 27/27 26/27 24/25 23/23 23/21 19/18 18/18 14/15
Nebraska 15/10 14/9 13/9 14/9 14/8 16/6 16/5 15/3 17/3
Nevada 41/34 44/39 45/41 48/41 48/43 48/46 48/47 48/47 48/47
New Hampshire 4/7 4/7 4/7 4/7 5/6 5/4 5/6 13/14 16/18
New Jersey 8/14 7/13 7/13 7/12 6/11 7/10 8/7 10/5 12/9
New Mexico 33/33 37/37 40/40 44/42 46/45 47/47 47/48 47/48 47/48
New York 18/24 16/23 14/19 13/19 12/15 12/14 10/13 7/7 4/5
North Carolina 32/37 30/35 28/34 25/34 21/31 20/29 18/27 23/22 25/23
North Dakota 12/8 15/8 16/8 17/8 17/7 19/8 28/8 33/6 34/8
Ohio 35/38 35/38 35/37 31/36 29/34 29/33 26/30 24/23 26/24
Oklahoma 44/44 43/43 43/43 42/43 36/41 36/38 36/35 37/35 37/35
Oregon 14/16 13/15 12/15 12/14 13/13 13/11 14/11 14/12 15/13
Pennsylvania 26/31 24/30 21/30 18/30 18/28 17/25 17/21 21/19 23/20
Rhode Island 10/21 8/20 8/17 8/17 7/18 6/17 6/24 6/36 3/36

(Continued on next page)
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Table A3 (continued)

Rank for Value of Beta

State -1 -0.5 -0.25 0 0.25 0.5 1 2 5

South Carolina 46/42 42/42 42/42 40/40 34/39 33/37 31/33 27/33 27/29
South Dakota 27/19 29/17 32/16 39/16 41/14 43/13 42/12 42/8 42/4
Tennessee 38/43 39/44 39/44 38/45 32/46 32/44 32/44 29/44 29/44
Texas 40/35 41/33 41/36 43/38 45/40 45/43 44/43 44/43 43/43
Utah 5/3 6/3 6/5 6/4 8/5 11/5 15/10 16/17 19/17
Vermont 1/4 1/4 1/4 1/3 1/4 1/12 1/36 1/37 1/37
Virginia 21/25 20/25 18/24 16/20 16/19 14/16 12/14 11/10 11/7
Washington 13/12 12/12 10/11 10/11 10/9 8/7 7/4 5/2 2/1
West Virginia 47/48 48/49 48/49 47/49 47/48 44/48 39/46 39/46 39/46
Wisconsin 16/9 18/11 22/12 34/13 43/20 46/32 46/39 46/39 46/39
Wyoming 23/23 26/24 29/25 37/24 40/27 42/31 43/38 43/38 44/38

Notes: Data from the 2012 version of America’s Health Rankings. Each row shows the rankings for
a state’s health under different assumptions regarding β, the substitution parameter. Lower ranking
numbers indicate better health, so the state with the best health receives a ranking of one. For each
column, the first number shows the state’s rank using AHR weights and the second number shows the
state’s rank using principal component weights.
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